Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2302152120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068249

RESUMO

The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Variação Antigênica/genética
2.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515978

RESUMO

Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here, we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen-encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.


Malaria causes severe illness and deaths in hundreds of thousands of people each year. Most of them are young children in Sub-Saharan Africa. The disease is transmitted when a mosquito carrying single-celled Plasmodium parasites bites a human, introducing the parasites into the bloodstream, where they enter red blood cells. When a red blood cell becomes infected, the parasite presents a protein on the cell's surface that the immune system can recognize to start fighting the infection. Immune cells then produce antibodies that flag infected cells for destruction, relieving the symptoms of the disease. To avoid being destroyed in this manner, the parasites repeatedly 'change' the protein that ends up on the surface of the red blood cells. With each change, the number of parasites rebounds, symptoms return, and the immune system must produce new antibodies. As the parasites and immune system battle it out, patients may experience repeated flare-ups of symptoms for well over a year. To change the protein that is presented on the surface of red blood cells, Plasmodium parasites switch the genes in the var gene family on and off one at a time. Each of these genes encodes a different surface protein, and the parasites may cycle through the entire var gene family during an infection. However, it remains a mystery how the millions of infecting parasites coordinate to produce the same surface protein each time. Zhang et al. show that a gene from Plasmodium parasites called var2csa is responsible for coordinating protein switching through a set pattern that allows the parasites to synchronize which protein they switch to next. Deleting the var2csa gene in malaria parasites blocks protein switching and disables this coordinated immune evasion tactic. Zhang et al.'s experiments provide new insights about protein switching in malaria parasites. Further research may help scientists characterize each step in the process and identify which steps can be targeted to treat malaria. While not a cure, treatments that disable protein switching could reduce the number of times patients relapse and relieve symptoms. More generally, the results of Zhang et al. describe a mechanism for coordinated gene expression that may be used in organisms other than Plasmodium, including humans.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Variação Antigênica/genética , Antígenos
3.
BMC Ecol Evol ; 21(1): 139, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238209

RESUMO

BACKGROUND: The most severe form of human malaria is caused by the protozoan parasite Plasmodium falciparum. This unicellular organism is a member of a subgenus of Plasmodium called the Laverania that infects apes, with P. falciparum being the only member that infects humans. The exceptional virulence of this species to humans can be largely attributed to a family of variant surface antigens placed by the parasites onto the surface of infected red blood cells that mediate adherence to the vascular endothelium. These proteins are encoded by a large, multicopy gene family called var, with each var gene encoding a different form of the protein. By changing which var gene is expressed, parasites avoid immune recognition, a process called antigenic variation that underlies the chronic nature of malaria infections. RESULTS: Here we show that the common ancestor of the branch of the Laverania lineage that includes the human parasite underwent a remarkable change in the organization and structure of elements linked to the complex transcriptional regulation displayed by the var gene family. Unlike the other members of the Laverania, the clade that gave rise to P. falciparum evolved distinct subsets of var genes distinguishable by different upstream transcriptional regulatory regions that have been associated with different expression profiles and virulence properties. In addition, two uniquely conserved var genes that have been proposed to play a role in coordinating transcriptional switching similarly arose uniquely within this clade. We hypothesize that these changes originated at a time of dramatic climatic change on the African continent that is predicted to have led to significant changes in transmission dynamics, thus selecting for patterns of antigenic variation that enabled lengthier, more chronic infections. CONCLUSIONS: These observations suggest that changes in transmission dynamics selected for significant alterations in the transcriptional regulatory mechanisms that mediate antigenic variation in the parasite lineage that includes P. falciparum. These changes likely underlie the chronic nature of these infections as well as their exceptional virulence.


Assuntos
Hominidae , Malária , Parasitos , Animais , Variação Antigênica/genética , Humanos , Proteínas de Protozoários/genética , Virulência/genética
4.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536326

RESUMO

The virulence of the malaria parasite Plasmodium falciparum is due in large part to its ability to avoid immune destruction through antigenic variation. This results from changes in expression within the multicopy var gene family that encodes the surface antigen P. falciparum erythrocyte protein one (PfEMP1). Understanding the mechanisms underlying this process has been a high-profile research focus for many years. The histone methyltransferase PfSET10 was previously identified as a key enzyme required both for parasite viability and for regulating var gene expression, thus making it a prominent target for developing antimalarial intervention strategies and the subject of considerable research focus. Here, however, we show that disruption of the gene encoding PfSET10 is not lethal and has no effect on var gene expression, in sharp contrast with previously published reports. The contradictory findings highlight the importance of reevaluating previous conclusions when new technologies become available and suggest the possibility of a previously unappreciated plasticity in epigenetic gene regulation in P. falciparumIMPORTANCE The identification of specific epigenetic regulatory proteins in infectious organisms has become a high-profile research topic and a focus for several drug development initiatives. However, studies that define specific roles for different epigenetic modifiers occasionally report differing results, and we similarly provide evidence regarding the histone methyltransferase PfSET10 that is in stark contrast with previously published results. We believe that the conflicting results, rather than suggesting erroneous conclusions, instead reflect the importance of revisiting previous conclusions using newly developed methodologies, as well as caution in interpreting seemingly contrary results in fields that are known to display considerable plasticity, for example metabolism and epigenetics.


Assuntos
Variação Antigênica , Antígenos de Protozoários/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/patogenicidade , Cromatina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...